Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Control Release ; 368: 595-606, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185333

RESUMO

Ferroptosis, a unique iron-dependent mode of cell death characterized by lipid peroxide accumulation, holds significant potential for the treatment of glioblastoma (GBM). However, the effectiveness of ferroptosis is hindered by the limited intracellular ferrous ions (Fe2+) and hydrogen peroxide (H2O2). In this study, a novel near-infrared (NIR)-light-responsive nanoplatform (ApoE-UMSNs-GOx/SRF) based on upconversion nanoparticles (UCNPs) was developed. A layer of mesoporous silica and a lipid bilayer were coated on UCNPs sequentially and loaded with glucose oxidase (GOx) and sorafenib, respectively. Further attachment of the ApoE peptide endowed the nanoplatform with BBB penetration and GBM targeting capabilities. Our results revealed that ApoE-UMSNs-GOx/SRF could efficiently accumulated in the orthotopic GBM and induce amplified ferroptosis when combining with NIR irradiation. The UCNPs mediated the photoreduction of Fe3+ to Fe2+ by converting NIR to UV light, and excess H2O2 was produced by the reaction of glucose with the loaded GOx. These processes greatly promoted the production of ROS, which together with inhibition of system Xc- by the loaded sorafenib, leading to enhanced accumulation of lipid peroxides and significantly improved the antiglioma effect both in vitro and in vivo. Our strategy has the potential to enhance the effectiveness of ferroptosis as a therapeutic approach for GBM.


Assuntos
Ferroptose , Glioblastoma , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Glioblastoma/tratamento farmacológico , Fotoquimioterapia/métodos , Sorafenibe , Peróxido de Hidrogênio , Apolipoproteínas E/uso terapêutico , Regeneração , Linhagem Celular Tumoral , Nanopartículas/química , Neoplasias/tratamento farmacológico
2.
Calcif Tissue Int ; 114(2): 182-199, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38055044

RESUMO

In hyperlipidemia-induced osteoporosis, bone marrow mesenchymal stem cells (BMSCs) differentiate into more adipocytes than osteoblasts, leading to decreased bone formation. It is vital to elucidate the effects of hyperlipidemia on bone metabolism and seek new agents that regulate adipocyte-osteoblast lineage allocation. CoQ10, a rate-limiting coenzyme of the mitochondrial respiratory chain, has been reported to decrease oxidative stress and lipid peroxidation by functioning as a mitochondrial antioxidant. However, its effect on hyperlipidemia-induced osteoporosis remains unknown. Here, we analyzed the therapeutic mechanisms of CoQ10 on hyperlipidemia-induced osteoporosis by using high-fat diet (HFD)-treated ApoE-/- mice or oxidized low-density lipoprotein (ox-LDL)-treated BMSCs. The serum lipid levels were elevated and bone formation-related markers were decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, which could be reversed by CoQ10. Additionally, PGC-1α protein expression was decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, accompanied by mitochondrial dysfunction, decreased ATP content and overgeneration of reactive oxygen species (ROS), which could also be antagonized by CoQ10. Furthermore, PGC-1α knockdown in vitro promoted ROS generation, BMSC apoptosis, and adipogenic differentiation while attenuating osteogenic differentiation in BMSCs. Mechanistically, it suggested that the expression of PGC1-α protein was increased with miR-130b-3p inhibitor treatment in osteoporosis under hyperlipidemia conditions to improve mitochondrial function. Collectively, CoQ10 alleviates hyperlipidemia-induced osteoporosis in ApoE-/- mice and regulates adipocyte-osteoblast lineage allocation. The possible underlying mechanism may involve the improvement of mitochondrial function by modulating the miR-130b-3p/PGC-1α pathway.


Assuntos
Hiperlipidemias , MicroRNAs , Osteoporose , Ubiquinona/análogos & derivados , Camundongos , Animais , Hiperlipidemias/complicações , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Osteoporose/prevenção & controle , Osteoporose/tratamento farmacológico , Diferenciação Celular , Mitocôndrias/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico
3.
Semin Ophthalmol ; 39(3): 201-208, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997789

RESUMO

PURPOSE: The purpose of this study was to determine whether specific genetic polymorphisms affect the response to intravitreal anti-vascular endothelial growth factor (anti-VEGF) treatment in patients with macular oedema secondary to retinal vein occlusion (RVO). METHODS: Participants in this prospective study were 50 patients with macular oedema secondary to RVO, who were treated with intravitreal ranibizumab or aflibercept, and were followed-up for 12 months after initiation of treatment. Five single nucleotide polymorphisms (SNPs) from three different genes (APOE, PON1, SDF-1) were examined as potential predictors for treatment response to intravitreal anti-VEGF agents. RESULTS: Patients with the LL genotype of the PON1 L55M SNP had significantly higher reduction in central subfield thickness (CST) at month 12 after initiation of intravitreal anti-VEGF treatment (101.63 ± 56.80 µm in LL vs. 72.44 ± 39.41 µm in LM vs. 40.25 ± 19.33 µm in MM, p = .026). Patients with the M allele of the PON1 L55M SNP were significantly associated with lower reduction in CST compared to non-carriers (68.29 ± 38.77 µm in LM + MM vs. 101.63 ± 56.80 µm in LL, p = .032). CONCLUSION: PON1 L55M SNP may serve as a promising genetic biomarker for predicting response to intravitreal anti-VEGF treatment in patients with macular oedema due to RVO.


Assuntos
Edema Macular , Oclusão da Veia Retiniana , Humanos , Oclusão da Veia Retiniana/complicações , Oclusão da Veia Retiniana/tratamento farmacológico , Oclusão da Veia Retiniana/genética , Edema Macular/etiologia , Edema Macular/genética , Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética , Estudos Prospectivos , Ranibizumab/uso terapêutico , Polimorfismo Genético , Apolipoproteínas E/uso terapêutico , Injeções Intravítreas , Arildialquilfosfatase/uso terapêutico
4.
J Thromb Haemost ; 22(1): 249-254, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37827379

RESUMO

BACKGROUND: Current antiplatelet agents exhibit reduced antithrombotic efficacy in high-risk populations such as populations with hypercholesterolemia. The class II PI3-kinase, PI3KC2α, is a recently discovered target for novel antiplatelet therapy. PI3KC2α inhibition is antithrombotic in healthy mouse models, but whether this is preserved in hypercholesterolemia remains unknown. OBJECTIVES: This study aimed to examine whether genetic deficiency or pharmacologic inhibition of PI3KC2α provides antithrombotic effects in blood from hypercholesterolemic mice. METHODS: Hypercholesterolemic PI3KC2α-deficient mice were generated by breeding into an ApoE-/- background. Thrombosis was examined using an ex vivo whole blood thrombosis assay. The effect of pharmacologic inhibition of PI3KC2α was examined in whole blood from ApoE-/- mice treated with the PI3KC2α inhibitor MIPS-21335. RESULTS: ApoE-/- mice exhibited the anticipated prothrombotic effect of hypercholesterolemia, with a 1.5-fold increase in thrombus volume in blood from ApoE-/- vs wild-type mice. This prothrombotic phenotype in blood from hypercholesterolemic mice was significantly reduced with PI3KC2α deficiency. Acute pharmacologic inhibition of PI3KC2α with MIPS-21335 similarly reduced thrombosis in blood from ApoE-/- mice. CONCLUSION: These findings demonstrate that targeting PI3KC2α results in a potent antithrombotic effect in hypercholesterolemic mice and suggest that PI3KC2α is a promising target for antithrombotic therapy in patients with hypercholesterolemia at a high risk of thrombotic events.


Assuntos
Hipercolesterolemia , Trombose , Animais , Camundongos , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Plaquetas , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Hipercolesterolemia/complicações , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Trombose/tratamento farmacológico , Trombose/prevenção & controle
5.
Exp Clin Endocrinol Diabetes ; 131(12): 676-685, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38056492

RESUMO

BACKGROUND: Clinical observation suggests the atheroprotective effect of chloroquine and its derivatives, while its mechanism remains unclear. This study aimed to observe the protective effect of chloroquine against atherosclerosis and explore the underlying mechanism. METHODS: Ataxia telangiectasia mutated (ATM) wild-type or haploinsufficient apolipoprotein-E-knockout (ATM+/+ApoE-/- or ATM+/-ApoE-/-) mice were treated with different dosages of chloroquine. Anti-CD25 antibody was used to deplete natural Tregs in ATM+/+ApoE-/- mice. The atherosclerotic burden in different groups of mice was comprehensively evaluated by H&E staining and Masson staining. The effect of chloroquine on the regulatory T cells (Tregs) was assessed in vivo and in vitro by flow cytometry and immunohistochemical staining. The expression of related proteins was detected by real-time polymerase chain reaction and western blotting. RESULTS: In ATM+/+ApoE-/- mice, chloroquine alleviated atherosclerotic lesions, stabilized the plaque, and increased Treg counts in the atherosclerotic lesions and spleens. However, in ATM haploinsufficient mice (ATM+/-ApoE-/-), chloroquine no longer prevented atherosclerosis or impacted Treg counts. Abolishing Treg cells using an anti-CD25 antibody in vivo abrogated the atheroprotective effect of chloroquine. In vitro, chloroquine promoted the differentiation of Tregs from naïve T cells, which was accompanied by enhanced ATM/AMP-activated protein kinase (AMPK) activity and reduced downstream mammalian target of rapamycin (mTOR) activity. DISCUSSION: These findings suggest that chloroquine ameliorates atherosclerosis and stabilizes plaque by modulating Tregs differentiation through the regulation of the ATM/AMPK/mTOR pathway.


Assuntos
Ataxia Telangiectasia , Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Linfócitos T Reguladores/metabolismo , Cloroquina/farmacologia , Cloroquina/metabolismo , Cloroquina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patologia , Camundongos Knockout para ApoE , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Mamíferos/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4164-4172, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802785

RESUMO

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , LDL-Colesterol , Hiperplasia , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , RNA Mensageiro
7.
J Neuroimmune Pharmacol ; 18(3): 476-494, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658943

RESUMO

Transplantation of curcumin-activated olfactory ensheathing cells (aOECs) improved functional recovery in spinal cord injury (SCI) rats. Nevertheless, little is known considering the underlying mechanisms. At the present study, we investigated the promotion of regeneration and functional recovery after transplantation of aOECs into rats with SCI and the possible underlying molecular mechanisms. Primary OECs were prepared from the olfactory bulb of rats, followed by treatment with 1µM CCM at 7-10 days of culture, resulting in cell activation. Concomitantly, rat SCI model was developed to evaluate the effects of transplantation of aOECs in vivo. Subsequently, microglia were isolated, stimulated with 100 ng/mL lipopolysaccharide (LPS) for 24 h to polarize to M1 phenotype and treated by aOECs conditional medium (aOECs-CM) and OECs conditional medium (OECs-CM), respectively. Changes in the expression of pro-inflammatory and anti-inflammatory phenotypic markers expression were detected using western blotting and immunofluorescence staining, respectively. Finally, a series of molecular biological experiments including knock-down of triggering receptor expressed on myeloid cells 2 (TREM2) and analysis of the level of apolipoprotein E (APOE) expression were performed to investigate the underlying mechanism of involvement of CCM-activated OECs in modulating microglia polarization, leading to neural regeneration and function recovery. CCM-activated OECs effectively attenuated deleterious inflammation by regulating microglia polarization from the pro-inflammatory (M1) to anti-inflammatory (M2) phenotype in SCI rats and facilitated functional recovery after SCI. In addition, microglial polarization to M2 elicited by aOECs-CM in LPS-induced microglia was effectively reversed when TREM2 expression was downregulated. More importantly, the in vitro findings indicated that aOECs-CM potentiating LPS-induced microglial polarization to M2 was partially mediated by the TREM2/nuclear factor kappa beta (NF-κB) signaling pathway. Besides, the expression of APOE significantly increased in CCM-treated OECs. CCM-activated OECs could alleviate inflammation after SCI by switching microglial polarization from M1 to M2, which was likely mediated by the APOE/TREM2/NF-κB pathway, and thus ameliorated neurological function. Therefore, the present finding is of paramount significance to enrich the understanding of underlying molecular mechanism of aOECs-based therapy and provide a novel therapeutic approach for treatment of SCI.


Assuntos
Microglia , Mucosa Olfatória , Traumatismos da Medula Espinal , Animais , Ratos , Anti-Inflamatórios/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Curcumina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/transplante
8.
Drug Dev Ind Pharm ; 49(9): 559-571, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37649422

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a neurodegenerative disease that is associated with aging and is influenced by both genetic and environmental factors. Several studies and clinical trials have demonstrated that resveratrol (Res) and salidroside (Sal) are not only biologically safe but also influence AD biomarker trajectories. However, their clinical applications have been quite limited due to poor specificity, low solubility, and insufficient blood-brain barrier (BBB) penetration. Therefore, we developed a nano-drug delivery system in which Res and Sal were encapsulated in liposomes, which were surface-modified with ApoE (ApoE-Res/Sal-Lips) to compensate for these deficiencies. METHOD: In this study, ApoE-Res/Sal-Lips were prepared using a standard thin-film hydration method for liposomes. Then, cellular uptake of the loaded liposomes was assessed in vitro using fluorescent staining assays. A BBB model was constructed to investigate the capacity of the liposomes to cross the BBB in vitro, and the ability of liposomes to target the brain was observed by in vivo imaging. In addition, the neuroprotective effects of the different liposome formulations in APP/PS-1 mice were evaluated by measuring the changes in levels of oxidative, anti-inflammatory, and anti-apoptotic factors in the mice brains. RESULTS: In vitro, ApoE-Res/Sal-Lips increased the uptake of Res and Sal by bEnd.3 and N2a cells, enhanced BBB penetration, and improved transport efficiency. In vivo, the ApoE-Res/Sal-Lips were found to alleviate AD pathological symptoms, reduce learning and memory impairments, and improve brain function. CONCLUSION: ApoE-Res/Sal-Lips provide a new method for the treatment of AD.


Assuntos
Doença de Alzheimer , Glucosídeos , Doenças Neurodegenerativas , Fenóis , Camundongos , Animais , Lipossomos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Resveratrol/farmacologia , Barreira Hematoencefálica , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico
9.
Acta Neuropsychiatr ; 35(6): 346-361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605989

RESUMO

OBJECTIVE: In Alzheimer's disease (AD), angiotensin II receptor blockers (ARBs) could reduce cerebrovascular dysfunction, while angiotensin-converting enzyme inhibitors (ACEis) might increase brain amyloid-ß by suppressing effects of the angiotensin-converting enzyme 1, an amyloid-ß-degrading enzyme. However, ACEis could benefit patients with AD by reducing the amyloidogenic processing of the amyloid precursor protein, by central cholinergic and anti-inflammatory mechanisms, and by peripheral modulation of glucose homeostasis. We aimed to investigate whether the ACE insertion/deletion polymorphism is associated with clinical changes in patients with AD, while considering apolipoprotein E (APOE)-ϵ4 carrier status and blood pressure response to angiotensin modulators. METHODS: Consecutive outpatients with late-onset AD were screened with cognitive tests and anthropometric measurements, while their caregivers were queried for functional and caregiver burden scores. Prospective pharmacogenetic associations were estimated for 1 year, taking APOE-ϵ4 carrier status and genotypes of the ACE insertion/deletion polymorphism into account, along with treatment with ACEis or ARBs. RESULTS: For 193 patients (67.4% women, 53.4% APOE-ϵ4 carriers), the ACE insertion/deletion polymorphism was in Hardy-Weinberg equilibrium (p = 0.281), while arterial hypertension was prevalent in 80.3% (n = 124 used an ACEi, n = 21 used an ARB). ARBs benefitted mostly APOE-ϵ4 carriers concerning caregiver burden variations, cognitive and functional decline. ACEis benefitted APOE-ϵ4 non-carriers concerning cognitive and functional decline due to improved blood pressure control in addition to possible central mechanisms. The ACE insertion/deletion polymorphism led to variable response to angiotensin modulators concerning neurological outcomes and blood pressure variations. CONCLUSION: Angiotensin modulators may be disease-modifiers in AD, while genetic stratification of samples is recommended in clinical studies.


Assuntos
Doença de Alzheimer , Humanos , Feminino , Masculino , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensinas/genética , Angiotensinas/uso terapêutico , Farmacogenética , Alelos , Estudos Prospectivos , Apolipoproteínas E/genética , Apolipoproteínas E/uso terapêutico
10.
Neural Plast ; 2023: 9206875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999158

RESUMO

High-fat diet- (HFD-) induced neuroinflammation may ultimately lead to an increased risk of cognitive impairment. Here, we evaluate the effects of diet control and swimming or both on the prevention of cognitive impairment by enhancing SIRT1 activity. Twenty-week-old ApoE-/- mice were fed a HFD for 8 weeks and then were treated with diet control and/or swimming for 8 weeks. Cognitive function was assessed using the novel object recognition test (NORT) and Y-maze test. The expression of sirtuin-1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), brain-derived neurotrophic factor (BDNF), nuclear factor kappa B p65 (NF-κB p65), interleukin-1ß (IL-1ß), and tumour necrosis factor-α (TNF-α) in the hippocampus was measured by western blotting. The levels of fractional anisotropy (FA), N-acetylaspartate (NAA)/creatine (Cr) ratio, choline (Cho)/Cr ratio, and myo-inositol (MI)/Cr ratio in the hippocampus were evaluated by diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) using 7.0-T magnetic resonance imaging (MRI). Our results showed that cognitive dysfunction and hippocampal neuroinflammation appeared to be remarkably observed in apolipoprotein E (ApoE)-/- mice fed with HFD. Diet control plus swimming significantly reversed HFD-induced cognitive decline, reduced the time spent exploring the novel object, and ameliorated spontaneous alternation in the Y-maze test. Compared with the HFD group, ApoE-/- mice fed diet control and/or subjected to swimming had an increase in FA, NAA/Cr, and Cho/Cr; a drop in MI/Cr; elevated expression levels of SIRT1, PGC-1α, and BDNF; and inhibited production of proinflammatory cytokines, including NF-κB p65, IL-1ß, and TNF-α. SIRT1, an NAD+-dependent class III histone enzyme, deacetylases and regulates the activity of PGC-1α and NF-κB. These data indicated that diet control and/or swimming ameliorate cognitive deficits through the inhibitory effect of neuroinflammation via SIRT1-mediated pathways, strongly suggesting that swimming and/or diet control could be potentially effective nonpharmacological treatments for cognitive impairment.


Assuntos
Disfunção Cognitiva , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Natação , Sirtuína 1 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Doenças Neuroinflamatórias , Imagem de Tensor de Difusão , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout para ApoE , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , Dieta , Dieta Hiperlipídica/efeitos adversos
11.
Pharm Biol ; 61(1): 473-487, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36825364

RESUMO

CONTEXT: Previously, we found Alisma orientalis beverage (AOB), a classic traditional Chinese medicine (TCM) formulation, had the potential effect of treating atherosclerosis (AS). The underlying mechanism was still unclear. OBJECTIVE: As an extention of our previous work, to investigate the underlying mechanism of action of AOB in the treatment for AS. MATERIALS AND METHODS: Network pharmacology was conducted using SwissTargetPrediction, GeneCards, DrugBank, Metascape, etc., to construct component-target-pathway networks. In vivo, AS models were induced by a high-fat diet (HFD) for 8 consecutive weeks in APOE-/- mice. After the administration of AOB (3.8 g/kg, i.g.) for 8 weeks, we assessed the aortic plaque, four indicators of blood lipids, and expression of the PI3K/AKT/SREBP-1 pathway in liver. RESULTS: Network pharmacology showed that PI3K/AKT/SREBP-1 played a role in AOB's treatment for AS (PI3K: degree = 18; AKT: degree = 17). Moreover, we found that the arterial plaque area and four indicators of blood lipids were all significantly reversed by AOB treatment in APOE-/- mice fed with HFD (plaque area reduced by about 37.75%). In addition, phosphorylated expression of PI3K/AKT and expression of SREBP-1 were obviously increased in APOE-/- mice fed with HFD, which were all improved by AOB (PI3K: 51.6%; AKT: 23.6%; SREBP-1: 40.0%). CONCLUSIONS: AOB had therapeutic effects for AS by improving blood lipids and inhibition of the PI3K/AKT/SERBP-1 pathway in the liver. This study provides new ideas for the treatment of AS, as well as new evidence for the clinical application of AOB.


Assuntos
Alisma , Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Alisma/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/farmacologia , Transdução de Sinais , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/tratamento farmacológico , Placa Aterosclerótica/tratamento farmacológico , Lipídeos , Apolipoproteínas E/genética , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Camundongos Endogâmicos C57BL
12.
Neuro Oncol ; 25(2): 303-314, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35802478

RESUMO

BACKGROUND: Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma. METHODS: RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis. RESULTS: We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology. CONCLUSIONS: 15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Transcriptoma , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Prognóstico , Encéfalo/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico
13.
J Neuroendocrinol ; 35(2): e13209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420620

RESUMO

Alzheimer's disease (AD) is characterized by numerous sexual dimorphisms that impact the development, progression, and probably the strategies to prevent and treat the most common form of dementia. In this review, we consider this topic from a female perspective with a specific focus on how women's vulnerability to the disease is affected by the individual and interactive effects of estrogens and apolipoprotein E (APOE) genotype. Importantly, APOE appears to modulate systemic and neural outcomes of both menopause and estrogen-based hormone therapy. In the brain, dementia risk is greater in APOE4 carriers, and the impacts of hormone therapy on cognitive decline and dementia risk vary according to both outcome measure and APOE genotype. Beyond the CNS, estrogen and APOE genotype affect vulnerability to menopause-associated bone loss, dyslipidemia and cardiovascular disease risk. An emerging concept that may link these relationships is the possibility that the effects of APOE in women interact with estrogen status by mechanisms that may include modulation of estrogen responsiveness. This review highlights the need to consider the key AD risk factors of advancing age in a sex-specific manner to optimize development of therapeutic approaches for AD, a view aligned with the principle of personalized medicine.


Assuntos
Doença de Alzheimer , Masculino , Humanos , Feminino , Apolipoproteínas E/genética , Apolipoproteínas E/uso terapêutico , Estrogênios/uso terapêutico , Menopausa , Apolipoproteína E4/genética , Genótipo
14.
Respir Med ; 204: 107007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36265420

RESUMO

Asthma prevailed as a common inflammatory disease affecting mainly the lower respiratory tract, with notable inflammation in the upper airways leading to significant morbidity and mortality. An extensive search for a new therapeutic target is continuously being carried out. Still, the majority have failed in the trials, and eventually, the drugs, including ß2-adrenergic agonists, muscarinic antagonists, and certain corticosteroids, remain the backbone for asthma control. Numerous endogenous factors aid in maintaining the normal homeostasis of the lungs and prevents disease progression. One among them is the apolipoproteins which are different sets of lipoprotein moieties that not only aid in the transport and metabolism of lipids but also impart immunomodulatory roles in various pathologies. Modern research joins the links between the immunomodulatory nature of apolipoproteins in chronic respiratory diseases like asthma and COPD, which can assist in ameliorating the disease progression. Recent studies have elucidated the protective roles of apoA-I and apoE in asthma. This has enabled the utilization of certain apolipoprotein-mimetic peptides to treat these severe pulmonary diseases in the long run. In this review, we have described the prominent and probable mechanistic roles of apolipoproteins like apoA-I, apoB, apoE, apoJ, and apoM in the pathogenesis and treatment of asthma along with the development of apoA-I and apoE-mimetics as a cardinal treatment strategy for eosinophilic as well as corticosteroid resistant neutrophilic asthma.


Assuntos
Apolipoproteína A-I , Asma , Humanos , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/uso terapêutico , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , Apolipoproteínas/uso terapêutico , Asma/tratamento farmacológico , Peptídeos , Progressão da Doença
15.
J Control Release ; 347: 68-77, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513207

RESUMO

The response of malignant glioma to immunotherapy remains gloomy due to its discrete immunological environment and poor brain penetration of immunotherapeutic agents. Here, we disclose that ApoE peptide-mediated systemic nanodelivery of granzyme B (GrB) and CpG ODN co-stimulates enhanced immunotherapy of murine malignant LCPN glioma model. ApoE peptide-functionalized polymersomes encapsulating GrB (ApoE-PS-GrB) could effectively penetrate the blood-brain barrier-mimicking endothelial cell monolayer in vitro and further be taken up by LCPN cells, inducing strong immunogenic cell death (ICD). The co-administration of ApoE-PS-GrB and ApoE-PS-CpG in orthotopic LCPN glioma-bearing mice co-stimulated cytokine production, maturation of dendritic cells (DCs), infiltration of cytotoxic T lymphocytes (CTLs) while reduction of regulatory T lymphocytes (Treg) and M2 phenotype macrophages in the tumor microenvironment, leading to greatly delayed tumor progression and significantly prolonged survival time compared with all controls. The ApoE-mediated systemic nanodelivery of GrB and CpG ODN opens a new pathway for potent immunotherapy of malignant glioma.


Assuntos
Glioma , Animais , Apolipoproteínas E/uso terapêutico , Células Dendríticas , Glioma/tratamento farmacológico , Granzimas , Imunoterapia , Camundongos , Oligodesoxirribonucleotídeos , Linfócitos T Citotóxicos , Microambiente Tumoral
16.
Food Res Int ; 154: 111014, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337573

RESUMO

Atherosclerosis (AS) is a serious threat to the health and life of humans worldwide. The mitigating effect of polyphenol compounds from peanut skin extract (PSE) on AS has attracted great research attention. However, the mechanism underlying this mitigating effect remains poorly understood. This study aims to investigate the preventive effect of PSE on high-fat diet-induced AS in mice and explore the underlying mechanisms. PSE treatment significantly reduced atherosclerotic plaques, particularly at high doses. Dietary PSE intervention obviously alleviated the lipid metabolism disorder in ApoE-/- mice by reducing the serum TC and LDL-C contents and increasing the HDL-C content. In addition, PSE intervention significantly decreased the level of pro-inflammatory cytokines TNF-α and IL-6 and increased that of anti-inflammatory IL-10, thus exhibiting a significant anti-inflammatory effect. More interestingly, analysis of the 16S rRNA gene sequence revealed that PSE could significantly alter the community composition of the gut microbiota. Specifically, PSE enhanced the abundance of Roseburia, Rothia, Parabacteroides and Akkermansia, and reduced that of Bilophila and Alistipes. Some of these intestinal bacteria exhibited good anti-inflammatory effects, which are related to the production of short chain fatty acids. Thus, the anti-atherosclerotic effect of PSE may be partly attributed to changes in the composition and function of gut microbiota, which may be closely associated with its anti-inflammatory effect. Moreover, untargeted metabolomics analysis indicated that PSE could regulate the levels of differential metabolites in the liver, serum and fecal samples.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Arachis , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Dieta Hiperlipídica/efeitos adversos , Inflamação/tratamento farmacológico , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , RNA Ribossômico 16S
17.
Curr Pharm Des ; 28(8): 671-677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35088656

RESUMO

BACKGROUND: It is widely recognized that atherosclerosis (AS) is related to vascular inflammation. Panax notoginseng saponins (PNS) extracted from the roots of Panax notoginseng have been shown to possess anti-inflammatory activity. It is widely used in the clinical treatment of cardiovascular and cerebrovascular diseases, but the protective effect of PNS on atherosclerosis is not fully understood. This study was designed to test the effects of PNS administration in apolipoprotein (apo)-E-deficient (ApoE-/-) mice on the activation of NF-κB p65, IL-1ß, IL-6, TNF-α and Calpain1 proteins. METHODS: 24 ApoE-/- mice fed with high-fat diet for 8 weeks to create the AS model. PNS, dissolved in three distilled water, was administered orally to two treatment groups at dosages of 60 mg/kg/d/mice and 180 mg/kg/d/mice. After 8 weeks, peripheral blood was collected for assessing the levels of TG, TC, LDL-C and HDL-C in serum by Biochemical Analyzer. HE staining was used to observe pathomorphological changes in the aortic root. Oil Red O staining was used to observe the lipid deposition in the aortic root. ELISA kits were used to assess the levels of IL-1ß and TNF-α in serum. The expression levels of NF-κB p65, IL-1ß, IL-6, TNF-α, and Calpain1 proteins in the aortic root were identified by Western blot. RESULTS: After PNS administration for 8 weeks, the levels of TG, TC, LDL-C, IL-1ß and TNF-α were decreased, the level of HDL-C was increased in apoE-/- mice. The arrangement of the tissue of aortic root tended to be normal, the cell morphology was restored, and the lipid depositions were reduced in apoE-/- mice treated with PNS. Moreover, PNS inhibited the expression levels of NF-κB p65, IL-6, IL-1ß, TNF-α and Calpain1 proteins of aortic root tissues in apoE-/- mice. CONCLUSION: PNS may inhibit the progression of atherosclerotic lesions via their anti-inflammatory biological property. PNS suppress the NF-κB signaling pathway and inhibits the expression of pro-inflammatory factors such as NF-κB p65, IL-6, IL-1ß, TNF-α and Calpain1 proteins in aortic root tissues of apoE-/- mice.


Assuntos
Aterosclerose , Panax notoginseng , Saponinas , Animais , Apolipoproteínas E/uso terapêutico , Aterosclerose/metabolismo , LDL-Colesterol , Humanos , Interleucina-6 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Panax notoginseng/química , Panax notoginseng/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Fator de Necrose Tumoral alfa
19.
Int J Mol Sci ; 19(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373276

RESUMO

The ATP-binding cassette transporter member A1 (ABCA1) and apolipoprotein E (ApoE) are major cholesterol transporters that play important roles in cholesterol homeostasis in the brain. Previous research demonstrated that specific deletion of brain-ABCA1 (ABCA1-B/-B) reduced brain grey matter (GM) and white matter (WM) density in the ischemic brain and decreased functional outcomes after stroke. However, the downstream molecular mechanism underlying brain ABCA1-deficiency-induced deficits after stroke is not fully understood. Adult male ABCA1-B/-B and ABCA1-floxed control mice were subjected to distal middle-cerebral artery occlusion and were intraventricularly infused with artificial mouse cerebrospinal fluid as vehicle control or recombinant human ApoE2 into the ischemic brain starting 24 h after stroke for 14 days. The ApoE/apolipoprotein E receptor 2 (ApoER2)/high-density lipoprotein (HDL) levels and GM/WM remodeling and functional outcome were measured. Although ApoE2 increased brain ApoE/HDL levels and GM/WM density, negligible functional improvement was observed in ABCA1-floxed-stroke mice. ApoE2-administered ABCA1-B/-B stroke mice exhibited elevated levels of brain ApoE/ApoER2/HDL, increased GM/WM density, and neurogenesis in both the ischemic ipsilateral and contralateral brain, as well as improved neurological function compared with the vehicle-control ABCA1-B/-B stroke mice 14 days after stroke. Ischemic lesion volume was not significantly different between the two groups. In vitro supplementation of ApoE2 into primary cortical neurons and primary oligodendrocyte-progenitor cells (OPCs) significantly increased ApoER2 expression and enhanced cholesterol uptake. ApoE2 promoted neurite outgrowth after oxygen-glucose deprivation and axonal outgrowth of neurons, and increased proliferation/survival of OPCs derived from ABCA1-B/-B mice. Our data indicate that administration of ApoE2 minimizes the adverse effects of ABCA1 deficiency after stroke, at least partially by promoting cholesterol traffic/redistribution and GM/WM remodeling via increasing the ApoE/HDL/ApoER2 signaling pathway.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/deficiência , Apolipoproteínas E/farmacologia , Acidente Vascular Cerebral/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Apolipoproteínas E/administração & dosagem , Apolipoproteínas E/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , HDL-Colesterol/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
20.
Transl Stroke Res ; 9(6): 654-668, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30225551

RESUMO

Subarachnoid hemorrhage (SAH) is a neurologically destructive stroke in which early brain injury (EBI) plays a pivotal role in poor patient outcomes. Expanding upon our previous work, multiple techniques and methods were used in this preclinical study to further elucidate the mechanisms underlying the beneficial effects of apolipoprotein E (ApoE) against EBI after SAH in murine apolipoprotein E gene-knockout mice (Apoe-/-, KO) and wild-type mice (WT) on a C57BL/6J background. We reported that Apoe deficiency resulted in a more extensive EBI at 48 h after SAH in mice demonstrated by MRI scanning and immunohistochemical staining and exhibited more extensive white matter injury and neuronal apoptosis than WT mice. These changes were associated with an increase in NADPH oxidase 2 (NOX2) expression, an important regulator of both oxidative stress and inflammatory cytokines. Furthermore, immunohistochemical analysis revealed that NOX2 was abundantly expressed in activated M1 microglia. The JAK2/STAT3 signaling pathway, an upstream regulator of NOX2, was increased in WT mice and activated to an even greater extent in Apoe-/- mice; whereas, the JAK2-specific inhibitor, AG490, reduced NOX2 expression, oxidative stress, and inflammation in Apoe-deficient mice. Also, apoE-mimetic peptide COG1410 suppressed the JAK2/STAT3 signaling pathway and significantly reduced M1 microglia activation with subsequent attenuation of oxidative stress and inflammation after SAH. Taken together, apoE and apoE-mimetic peptide have whole-brain protective effects that may reduce EBI after SAH via M1 microglial quiescence through the attenuation of the JAK2/STAT3/NOX2 signaling pathway axis.


Assuntos
Apolipoproteínas E/uso terapêutico , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Hemorragia Subaracnóidea/patologia , Animais , Apolipoproteínas E/genética , Lesões Encefálicas/etiologia , Lesões Encefálicas/prevenção & controle , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Marcação In Situ das Extremidades Cortadas , Janus Quinase 2/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 2/metabolismo , Exame Neurológico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Hemorragia Subaracnóidea/diagnóstico por imagem , Tirfostinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...